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ABSTRACT

The waveform for Blazhko stars can be substantially different during the ascending and descending parts of the
Blazhko cycle. A hybrid model, consisting of two component oscillators of the same frequency, is proposed as a
means to fit the data over the entire cycle. One component exhibits a sawtooth-like velocity waveform while the
other is nearly sinusoidal. One method of generating such a hybrid is presented: a nonlinear model is developed for
the first overtone mode, which, if excited to large amplitude, is found to drop strongly in frequency and become
highly non-sinusoidal. If the frequency drops sufficiently to become equal to the fundamental frequency, the two
can become phase locked and form the desired hybrid. A relationship is assumed between the hybrid mode velocity
and the observed light curve, which is approximated as a power series. An accurate fit of the hybrid model is made
to actual Kepler data for RR Lyr. The sinusoidal component may tend to stabilize the period of the hybrid which is
found in real Blazhko data to be extremely stable. It is proposed that the variations in amplitude and phase might
result from a nonlinear interaction with a third mode, possibly a nonradial mode at 3/2 the fundamental frequency.
The hybrid model also applies to non-Blazhko RRab stars and provides an explanation for the light curve bump. A
method to estimate the surface gravity is also proposed.
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1. INTRODUCTION

The Blazhko effect is a modulation of the pulsation amplitude
that is seen in some RR Lyrae variable stars of RRab type.
Ever since Blazhko (1907) discovered the effect, a wide variety
of explanations have been put forth—recently reviewed by
Kolenberg (2012). Of particular relevance here are those which
involve an interaction between two or more vibrational modes
of the star, at least one of which is unstable (see, e.g., Kollath
et al. 2011; Buchler & Kollath 2011; Dziembowski & Mizerski
2004; Van Hoolst et al. 1998; Moskalik 1986).

The waveform exhibited by Blazhko stars can look markedly
different during the ascending and descending parts of the
Blazhko cycle. It is found that this behavior can be accurately
reproduced with a hybrid model consisting of two component
oscillators of identical frequency, one of which generates
a sawtooth-like velocity waveform and the other is nearly
sinusoidal. The differing ascending and descending behavior
is reproduced through variations in the amplitude and relative
phase of the two components.

A possible mechanism for a star to generate this hybrid mode
is presented. A model of the first-overtone mode is found to
drop in frequency as the amplitude is increased. If the overtone
frequency drops sufficiently to reach the fundamental frequency,
these modes can phase lock and produce the hybrid. Using
optimization techniques (see, e.g., Press et al. 2007; Quinn et al.
2009), the output of this hybrid model produces an accurate
fit to Kepler data for RR Lyr for the entire Blazhko cycle, as
shown in Figure 1. Additional accuracy is achieved by adding
small contributions from a mode with frequency 3/2 times
the fundamental; its possible role in the Blazhko dynamics is
discussed. The rms error of the fit is typically about 3% of the
peak to peak amplitude. These results are described in detail
below.

Other possibilities may exist, either to generate the hybrid or
to explain its ability to fit the data. For example, a different pair of
modes could be used, or perhaps some non-modal aspect of the
dynamics could be shown to effectively generate the sinusoidal
component. Another possibility is a reversal of the roles where
a strongly excited fundamental pulls down the frequency of the
first overtone until they match.

The hybrid model will also fit data for non-Blazhko stars.
The waveform “bump” is generated simply by combining the
modes, similar to the resonance mechanism in bump Cepheids.
The bump moves and changes as is observed in the Blazhko
cycle (Guggenberger & Kolenberg 2006).

In his shock-based Blazhko model, Gillet (2013) also uses
the first overtone, but with a “transient” excitation rather than a
continuous one. Molnar et al. (2012) claims to observe the first
overtone in RR Lyr spectra; however, this work does not consider
that the modal frequencies may shift substantially (probably
downward) due to the extremely disruptive effect of the main
oscillation. The hybrid components will not appear as separate
peaks since they have the same frequency.

The model for the overtone mode is equivalent to the one
used by Stellingwerf (1972) to study Cepheid variables. It is
a variant of the Baker (1966) “one-zone model.” Stellingwerf
(1986) Figure 4 shows a case for which the period increased by
about 60%. Stellingwerf et al. (1987) uses the same model to
study the first overtone in RR Lyrae. In a study using a solvable
stellar model, Cox (1974) finds a period increase of a factor
of 1.54 for a case where the skewness of the velocity function
appears roughly similar to that found in RRab stars—see his
Figure 22(b), for w+ = 2, and his Table 4.

The overtone model makes a gradual transition between two
types of behavior: at the low excitation limit it produces a sine
wave and at the high excitation limit it produces a “bouncing
ball” wave. In the latter case, the dynamics of the outer part
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Figure 1. Comparison of Kepler data (points) with the model (line), showing an
accurate fit. Data are for RR Lyr, collected in the second quarter of the Kepler
project. Results are shown for four-cycle intervals at six different locations in
the Blazhko cycle. Relative to the beginning of the second quarter these have
the following offsets: (a) 12 cycles, (b) 24 cycles, (c) 36 cycles, (d) 48 cycles,
(e) 60 cycles, and (f) 72 cycles. This provides coverage of one Blazhko cycle.

(A color version of this figure is available in the online journal.)

of the star is primarily governed by gravity alone, except when
it is near its most inward position. At that point the outward
pressure force is very strong, overcoming gravity and causing
the motion to bounce. Unlike the force in a simple harmonic
oscillator that increases with displacement, gravity remains
relatively constant with amplitude. It is the weak nature of
this restoring force that causes the period to increase. Plotted
against time, this produces a succession of parabolic curves
in a scalloped pattern. The corresponding velocity function is
a sawtooth-like wave that is seen in real data for RRab stars
(see, e.g., For et al. 2011) and certain other variable stars. The
ability to reproduce this waveform is a strong indication that
the model is indeed capturing some of the essential physics of
the real system. The period of a bouncing ball increases with
peak amplitude. If the gravitational force can be approximated
as constant throughout the cycle then in the high amplitude
limit the period is proportional to the square root of the peak
amplitude. Typical waveforms for position and velocity from

Figure 2. Position x(t) and velocity v(t) for the overtone model. Due to the high
amplitude, the waveform is highly non-sinusoidal and the angular frequency has
dropped from 15 to 11.1 rad day−1, matching the frequency of the fundamental
mode. Model output is the same as used in Figure 1 part (a) and is nearly
identical to that used in other parts.

(A color version of this figure is available in the online journal.)

the model of the first overtone are shown in Figure 2, for the
case where the frequency has dropped far enough to become
equal to the frequency of the fundamental.

In the low amplitude limit, period increase can be examined
in a universal way that applies to all asymmetric oscillators.
Consider the equation for a simple harmonic oscillator and add
the leading nonlinear correction to the restoring force, i.e., a
term proportional to the square of the displacement. Analysis
of this equation shows that the fractional period increase is
approximately 15 times the square of the ratio of the second
harmonic to the fundamental. That ratio can be considered a
measure of non-sinusoidality which is thus linked to period
increase.

It is known that the stellar oscillation period is extremely
stable during the Blazhko cycle, varying by less than 1%
(Kolenberg et al. 2010; Stellingwerf et al. 2013). This provides a
strong argument for the hybrid model because the fundamental
component remains sinusoidal (or very nearly so) and is thereby
able to stabilize the frequency of the combination. The overall
amplitude changes are almost entirely due to changes in the
fundamental’s peak amplitude and relative phase. The overtone
remains essentially constant in amplitude and therefore does
not shift in frequency during the Blazhko cycle. If the hybrid
was replaced by a single non-sinusoidal mode, the required
amplitude changes would likely cause dramatic changes in the
period of these oscillations, which are not observed.

The relative phase is expected to be related to the rate of power
transfer between the modes (via nonlinear mode coupling),
and as will be shown below this appears to be consistent with
amplitude changes of the fundamental providing another check
on the validity of the hybrid model.

The sawtooth-like waveform of RR Lyrae and Cepheid
variables appears to be a sign of gravity limited dynamics and
could therefore be used to estimate the surface gravity g. The
maximum inward slope could be obtained from radial velocity
measurements (For et al. 2011; Chadid & Preston 2013) and
used as an estimate (or lower bound) for g. Since g can also be
determined from the radius and mass of a star, this could provide
an additional check on the accuracy of those values.

2. MODEL

At low amplitudes, the vibrational dynamics of a star are
known to reduce to a set of independent modes (see, e.g., Unno
et al. 1989), each of which can be represented as a harmonic
oscillator times a function of position that characterizes that
mode. For the first radial overtone there is a nodal surface
at a certain radius. The assumption is made that at high
levels of excitation this spatial structure is maintained (at
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least approximately) and the main difference is that the forces
governing the dynamics now become nonlinear and may be
estimated by a simplified analysis of the system in question.

The primary forces acting on the dynamics of a star come
from gravity and pressure. Dissipation and excitation mecha-
nisms will initially be ignored so that the dynamics will be con-
servative. Results from fitting the model to Kepler data show that
the first overtone is the only mode that is driven strongly into
the nonlinear regime, while the fundamental remains very nearly
sinusoidal and is approximated here as a sine wave. Although
crude in its derivation, the model for the overtone mode is nev-
ertheless good enough to produce dynamics that can achieve an
accurate fit to real Blazhko data. The model takes the form of an
ordinary differential equation for a harmonic oscillator, but with
the usual linear forcing term replaced with a nonlinear function
f (x) that, in a very simplified way, captures the essence of the
gravity and pressure forces, i.e., ẋ = v and v̇ = f (x), where x
and v are position and velocity. A simple polytropic model (see,
e.g., Hansen et al. 2004) is used to estimate a typical pressure P,
and it is assumed that a typical density is inversely proportional
to a characteristic volume V:

P ∝ 1/V (n+1)/n, (1)

where n is the polytropic index.
Let Rn be the nodal radius for the overtone mode. The

approach will be to focus on the dynamics above this radius.
It is assumed that there is an effective radius r which has
an equilibrium value R1. Let x be the dynamical offset from
equilibrium, so r = R1 +x. Approximate the volume of material
above Rn as proportional to r3 − R3

n. Rescale so that Rn = 1.
Then the pressure force is

fp ∝ r2/(r3 −1)(n+1)/n = (R1 +x)2/((R1 +x)3 −1)(n+1)/n. (2)

The gravitational force fg should go as −1/r2, so the combined
force f will be of the form:

f (x) = A(R1 + x)2/((R1 + x)3 − 1)(n+1)/n − B/(R1 + x)2, (3)

where A and B are constants. Let ω be the small amplitude
frequency for the overtone mode. Require f (0) = 0 and obtain
ω from the gradient of the force at x = 0, i.e., ω2 = −f ′(0).
Solving for A and B it is found:

A = ω2V
γ

1

(
3γR4

1V
−1

1 − 4R1
)−1

(4)

and
B = ω2R4

1

(
3γR4

1V
−1

1 − 4R1
)−1

, (5)

where γ = (n + 1)/n and V1 = R3
1 − 1. Typical results are

shown in Figure 2. The sharpness of the minima of the x(t) plot
is caused by the approach to the nodal surface. For the case seen
in the figure, the “bounce zone” is relatively short in duration
compared to the period, which is an indication that the dynamics
will depend only slightly on the details of the pressure force.

3. RESULTS AND DISCUSSION

The approach is to attempt to fit actual data using a combina-
tion of modes, one of which is highly non-sinusoidal. The data
used is from RR Lyr, the eponym of the class, from the Kepler
project (Kepler Input Catalog KIC 7198959, second quarter,
long cadence corrected flux data) which covers about 150 stel-
lar cycles and slightly over two Blazhko cycles. The fitting has
been done on intervals of four stellar cycles (111 Kepler time

steps) and all usable data from the second quarter was included
in the analysis. It is found that all parts of the Blazhko cycle can
be well fit with the combination of the fundamental and the first
overtone, with the overtone being highly non-sinusoidal and
having dropped in frequency to match the fundamental which
is approximated as a sine wave. The nodal surface of the over-
tone mode limits its available range of motion and causes it to
become nonlinear at a lower level of energy than the funda-
mental. The amplitude and relative phase of the fundamental
vary gradually throughout the Blazhko cycle but are relatively
constant throughout one four-cycle interval. The first overtone
varies little in amplitude throughout the Blazhko cycle, since
any amplitude change would necessarily cause its frequency to
move away from a match with the fundamental to which it is
assumed to be phase locked by nonlinear interaction.

Additional accuracy is achieved by adding a small contri-
bution from a third mode at 3/2 the fundamental frequency.
Evidence for such a mode is seen in the data (Kolenberg et al.
2010). Other half-integer frequencies have been suggested for
this mode (Kollath et al. 2011; Buchler & Kollath 2011), but
3/2 seemed to perform the best for fitting purposes. If this mode
is nonradial, it could help explain its small amplitude and seem-
ingly erratic appearance in the light curve data. A nonradial
mode could also be a member of a large number of closely
spaced modes. If the evolution of the star caused it to sequen-
tially be in resonance with consecutive members of this set,
this could provide one explanation for the observed four-year
meta-cycle (Stellingwerf et al. 2013).

Parameters are obtained by using an optimization algorithm
(see, e.g., Press et al. 2007; Quinn et al. 2009) to obtain the best
mean square fit between the model and the data. The parameters
are held fixed for the entire data set, while the initial conditions
(amplitude and phase of the modes) are re-optimized for the start
of each four-cycle interval. These changes reflect the effects of
damping, excitation, and energy transfer between the modes,
which are assumed to be taking place on a slow timescale so
that they can be ignored within a given four-cycle interval. These
effects are not directly included in the equations, though they
likely will be in a more detailed future study.

Although a reasonably good fit can be obtained using the
assumption that the light curve data is a constant plus a linear
combination of the mode velocities, it is found that obtaining a
good fit at a different interval requires some change in parameter
values. A solution to this problem was found by making the
hypothesis that the light curve can be accurately reproduced by
using a nonlinear function of the combined mode velocities. This
was achieved by using a power series expansion that included
constant, linear, quadratic and cubic terms. (No justification for
this is currently known, other than to say that it seems to work
remarkably well.) These coefficients were also found using an
optimization process and are then fixed for the entire second
quarter data set along with the other parameters.

In Figure 1 is shown the fit of the model to the data at several
different parts of the Blazhko cycle. Note that these different
intervals not only show changes in amplitude, but also changes
in the shape of the waveform. Generally the fit is excellent,
although there are certain regions in which the data seems to
have a slightly different motion than the model. Attempting to
improve on this is a goal for future study. For modeling the
data shown, some rescaling was done to keep the values closer
to unity: the light flux was reduced by a factor of 107, and
time was measured in units of 0.1 days. The polytropic index
was set to 1.5. The base angular frequency of the overtone
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Figure 3. Flux function, calculated to optimize the fit of the model velocity
output to the Kepler flux data using a cubic expansion.

mode was set to 1.5, and the frequency of the fundamental was
set to 1.11 (radians per 0.1 day). This corresponds to actual
periods in days of 0.41888 and 0.56605, respectively, and a
base period ratio of 0.740, which is near the expected ratio
for this type of star (see, e.g., Soszynski et al. 2009). R1 was
set to 1.1, the output of the overtone model was scaled by the
factor 1.03412, and the angular frequency of the third mode
was optimized and ended up at 1.62444. The fundamental mode
velocity was approximated as a pure sine wave and optimized in
peak amplitude and initial phase for each interval independently.
The initial conditions for the overtone model (position and
velocity) were also optimized for each interval independently.1

The output of the overtone model was calculated by fourth order
Runge–Kutta integration (see, e.g., Press et al. 2007), with a
fixed half step that is one quarter of the Kepler data time step
(0.25 times 0.0204342 days). The resulting v(t) output is scaled
by the factor given above, added to the fundamental velocity
to produce a combined velocity vc(t). (The small third mode
correction was also added here as a sine wave.) This is then
processed by the flux function to produce the light output L(t):

L(t) = k0 + vc(t) + k2vc(t)2 + k3vc(t)3, (6)

where the coefficients are optimized to the values: k0 =
1.267203, k2 = −5.293310 and k3 = 21.40176. This function
is plotted for the range of interest in Figure 3.

Figure 4 shows the peak amplitude of the fundamental mode
and its phase relative to the first overtone, as functions of time
for the entire second quarter, obtained by the optimization
process. Both show cyclical behavior that corresponds to the
Blazhko cycle. Clearly the explanation for this behavior lies in
the effects that have been omitted, i.e., the excitation, damping,
and nonlinear energy transfer between the fundamental and the
overtone and possibly one or more additional modes. Attempting
to determine the details of these effects and interactions will be
the subject of future work.

One hypothesis to explain the Blazhko effect is outlined as
follows: the overtone is an “unstable” mode, which acquires
energy from the star and grows in amplitude until its frequency
has dropped down to equal that of the fundamental to which

1 For Figure 1 parts (a)–(f) respectively, the intervals start at data points for
which the truncated barycentric Julian dates are 55010.0596736,
55016.8642109, 55023.6687195, 55030.4731980, 55037.2980786, and
55044.0820593. As found by optimization, the fundamental’s peak amplitudes
are 0.075003, 0.070437, 0.054499, 0.056218, 0.074069, and 0.078855; its
initial phases are 1.70037, 2.23588, 2.50505, 1.53000, 1.44687, and 1.45994;
the overtone’s initial positions are −0.066276, −0.067965, −0.068204,
−0.051784, −0.069204, and −0.067654; its initial velocities are −0.069905,
0.047529, 0.040970, −0.139883, −0.009504, and −0.053195; the third
mode’s peak amplitudes are 0.0008838, 0.0045300, 0.0008473, 0.0068498,
0.0022172, and 0.0009730; and its initial phases are 0.41714, −0.67875,
1.70241, 0.39568, 0.90341, and 1.22851.

(a)

(b)

Figure 4. (a) Peak amplitude and (b) relative phase of the fundamental mode
velocity as a function of time in stellar cycles since the start of the second
quarter Kepler data. The fundamental velocity is approximated as a pure sine
wave v(t) = A sin(ωt +φ), where A is the amplitude. A and φ are determined by
optimizing the fit of the model to the Kepler data for each four-cycle interval.
The relative phase is found by taking the time at which the overtone velocity
changes from negative to positive and subtracting the corresponding time for
the fundamental and then multiplying by 2π divided by the period. This is done
at the crossing point nearest the center of each four-cycle interval. Each dot in
the figure is one calculation.

it becomes phase locked. The incoming energy acquired by the
overtone still exceeds its energy loss due to damping, but instead
of continuing to increase in amplitude, the excess energy of the
overtone is transferred by nonlinear coupling to the fundamental
and/or a third mode, possibly a nonradial mode at 3/2 the
frequency. The details of the coupling between these modes
need further study, but in order to explain the Blazhko effect,
there must be an inherent instability that causes this energy
transfer to cycle back and forth between the fundamental and
this third mode. The energy transfer rate is related to the relative
phase. By comparing parts (a) and (b) of Figure 4 it is seen
that the phase drops rapidly near cycle 43 and again near cycle
112 at the same times that the amplitude rapidly changes from
decreasing to increasing. Thus it would appear that this decrease
in phase results in an increase in the energy transfer rate from
the overtone to the fundamental causing the amplitude of the
fundamental to increase. This strong correlation between the
amplitude and phase changes is further evidence that the hybrid
mode concept is valid.

I thank Katrien Kolenberg for helpful discussion, and for
introducing me to this interesting problem. I thank Robert
Stellingwerf for many helpful comments.
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Soszynski, I., Udalski, A., Szymański, M. K., et al. 2009, AcA, 59, 1
Stellingwerf, R. F. 1972, A&A, 21, 91
Stellingwerf, R. F. 1986, ApJ, 303, 119
Stellingwerf, R. F., Gautschi, A., & Dickens, R. J. 1987, ApJL, 313, L75
Stellingwerf, R. F., Nemec, J. M., & Moskalik, P. 2013, in Proc. Regional Vari-

able Star Conf., 40 Years of Variable Stars: A Celebration of Contributions
by Horace A. Smith, ed. K. Kinemuchi, C. A. Kuehn, N. De Lee, & H. A.
Smith, in press (arXiv:1310.0543v1)

Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial
Oscillations of Stars (2nd ed.; Tokyo: Univ. Tokyo Press)

Van Hoolst, T., Dziembowski, W. A., & Kawaler, S. D. 1998, MNRAS,
297, 536

5

http://adsabs.harvard.edu/abs/2012JAVSO..40..481K
http://adsabs.harvard.edu/abs/2012JAVSO..40..481K
http://dx.doi.org/10.1088/2041-8205/713/2/L198
http://adsabs.harvard.edu/abs/2010ApJ...713L.198K
http://adsabs.harvard.edu/abs/2010ApJ...713L.198K
http://dx.doi.org/10.1111/j.1365-2966.2011.18451.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.1111K
http://adsabs.harvard.edu/abs/2011MNRAS.414.1111K
http://dx.doi.org/10.1088/2041-8205/757/1/L13
http://adsabs.harvard.edu/abs/2012ApJ...757L..13M
http://adsabs.harvard.edu/abs/2012ApJ...757L..13M
http://adsabs.harvard.edu/abs/1986AcA....36..333M
http://adsabs.harvard.edu/abs/1986AcA....36..333M
http://dx.doi.org/10.1103/PhysRevE.80.016201
http://adsabs.harvard.edu/abs/2009PhRvE..80a6201Q
http://adsabs.harvard.edu/abs/2009PhRvE..80a6201Q
http://adsabs.harvard.edu/abs/2009AcA....59....1S
http://adsabs.harvard.edu/abs/2009AcA....59....1S
http://adsabs.harvard.edu/abs/1972A&A....21...91S
http://adsabs.harvard.edu/abs/1972A&A....21...91S
http://dx.doi.org/10.1086/164058
http://adsabs.harvard.edu/abs/1986ApJ...303..119S
http://adsabs.harvard.edu/abs/1986ApJ...303..119S
http://dx.doi.org/10.1086/184834
http://adsabs.harvard.edu/abs/1987ApJ...313L..75S
http://adsabs.harvard.edu/abs/1987ApJ...313L..75S
http://www.arxiv.org/abs/1310.0543v1
http://dx.doi.org/10.1046/j.1365-8711.1998.01540.x
http://adsabs.harvard.edu/abs/1998MNRAS.297..536V
http://adsabs.harvard.edu/abs/1998MNRAS.297..536V

	1. INTRODUCTION
	2. MODEL
	3. RESULTS AND DISCUSSION
	REFERENCES

